If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+7=35
We move all terms to the left:
k^2+7-(35)=0
We add all the numbers together, and all the variables
k^2-28=0
a = 1; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·1·(-28)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*1}=\frac{0-4\sqrt{7}}{2} =-\frac{4\sqrt{7}}{2} =-2\sqrt{7} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*1}=\frac{0+4\sqrt{7}}{2} =\frac{4\sqrt{7}}{2} =2\sqrt{7} $
| 3(4x+2)=10x-4x+18 | | 6x-12=2(18) | | 2(5x+2)=20x-2(5x-2) | | 81=27^x+1 | | 4y2-49=0 | | 74y-8-78y=-4y8 | | -3x=5-4-13 | | 90+2x-9+x=180 | | 4m−3=9 | | 3x+9+6x=-90 | | 81=27^x=1 | | 5/9=2/3+x | | 2r−–4=16 | | P^2-16p-29=7 | | 2x+4-5x=-32 | | x/2+9/1=14 | | -4x+3+6x=-7 | | -8/3x-9+2/3x-3=6 | | 2x+43=7x-12 | | -5=p+3 | | x=21x-3 | | c2+ 7=11 | | –5 = k14 | | 13=7+2w | | 4x+17=12x-33 | | g4+ 10=12 | | 3=j4−1 | | (24/45)100=x | | 5(y2/5)=13= | | 24=4(w-2)-8w | | 1÷x=-7 | | 6x+1+8x-23=90 |